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We continue the study of the generalization of Bernstein operators introduced
previously, obtained by requiring suitable recursive relations on the binomial-type
coefficients. We show that these operators can be used to approximate the solutions
of some degenerate second order parabolic problems. � 1996 Academic Press, Inc.

1. INTRODUCTION

In [2] we introduced and studied a generalization of the classical
Bernstein operators consisting in replacing the binomial coefficients with
more general ones satisfying suitable recursive relations. Namely, we con-
sidered two sequences (*n)n # N and (\n)n # N of real numbers and for every
n�1, we defined

An( f )(x) := :
n

k=0

:n, kxk(1&x)n&k f \k
n+ , f # C([0, 1]), x # [0, 1],

(1.1)

with :n, k determined by

:n+1, k=:n, k+:n, k&1, k=1, ..., n (1.2)
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and

:n, 0=*n , :n, n=\n . (1.3)

In this paper, we require that the sequences (*n)n # N and (\n)n # N are
positive and converge to *� and \� respectively; we also assume that

*�>0, \�>0. (1.4)

Under these assumptions, the function

*� , if x=0,

w(x) :={ :
�

m=1

*m x(1&x)m+\mxm(1&x), if 0<x<1, (1.5)

\� , if x=1,

is continuous on [0, 1] and, for every f # C([0, 1]), the sequence
(An( f ))n # N converges uniformly to w } f (see [2, Theorem 2.2]).

Observe that (1.4) guarantees that the function w is strictly positive on
[0, 1]; really, we shall need only this last condition in the sequel.

Since the sequence (An(1))n # N converges to w, it is definitively strictly
positive and therefore we can consider the operator

Ln :=
An

An(1)
. (1.6)

We can also assume that every Ln is a positive contraction. If we assume
only that w is strictly positive, this follows by considering sufficiently large
values of n for which An is positive, which is possible by comparing
[2, Theorem 2.4, (2.30) and (2.34)] with (1.1).

The starting point of our investigation is a Voronovskaja-type formula
obtained in [2, Theorem 3.4], which can be stated in the following form

lim
n � �

n(Ln( f )(x)& f (x))

={
1
2

x(1&x) f "(x)+x(1&x)
w$(x)
w(x)

f (x), if 0<x<1,
(1.7)

0, if x=0, 1,

uniformly in x # [0, 1] for every f # C2([0, 1]).
Indeed, property (1.7) provides the link with semigroup theory, whence

the connection between these operators and the solutions of some general

271BERNSTEIN-TYPE OPERATORS, II



File: 640J 299403 . By:BV . Date:14:11:96 . Time:14:25 LOP8M. V8.0. Page 01:01
Codes: 2504 Signs: 1492 . Length: 45 pic 0 pts, 190 mm

degenerate second order parabolic problems. Similar problems have been
considered for Bernstein operators and other classes of positive operators
(for a rather complete exposition of this subject see, e.g., [1, Chapter 6]).

However, all the cases considered in the literature until now regard the
approximation of the solutions of parabolic problems having the form

{
�u
�t

(x, t)=:(x)
�2u
�x2 (x, t), 0<x<1, t>0,

(1.8)
lim

x � 0+
:(x)

�2u
�x2 (x, t)= lim

x � 1&
:(x)

�2u
�x2 (x, t)=0, t>0,

u(x, 0)=u0(x),

where u0 # C([0, 1]) & C2(]0, 1[) satisfies the Ventcel's boundary conditions

lim
x � 0+

:(x) u"0(x)= lim
x � 1&

:(x) u"0(x)=0.

For example, in the case of Bernstein operators, the function : is given
by :(x)=x(1&x)�2. More general situations can be considered using
Stancu operators, where :(x)=bx(1&x)�2 with b�1, or Lototsky
operators, where :(x)=*(x) x(1&x)�2 with *: [0, 1] � [0, 1] continuous
and strictly positive (see, e.g., [1, 6.3.4�6.3.8]).

Under assumptions (1.4), we shall see that our operators can be
associated to a degenerate parabolic problem having the form

{
�u
�t

(x, t)=:(x)
�2u
�x2 (x, t)+;(x)

�u
�x

(x, t), 0<x<1, t>0,

(1.9)
lim

x � 0+
:(x)

�2u
�x2 (x, t)+;(x)

�u
�x

(x, t)

= lim
x � 1&

:(x)
�2u
�x2 (x, t)+;(x)

�u
�x

(x, t)=0, t>0,

u(x, 0)=u0(x),

where u0 satisfies the boundary conditions

lim
x � 0+

:(x) u"0(x)+;(x) u$0(x)= lim
x � 1&

:(x) u"0(x)+;(x) u$0(x)=0, (1.10)

and :(x)=x(1&x)�2 (as in the case of Bernstein operators). The new fact
is the appearance of a ``perturbation term'' ;(x)=x(1&x) w$(x)�w(x)
depending on the sequences (*n)n # N and (\n)n # N .
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2. EVOLUTION EQUATIONS AND ASSOCIATED SEMIGROUPS

Let (*n)n # N and (\n)n # N be sequences of positive real numbers satisfying
(1.4). In order to solve problem (1.9)�(1.10), we consider the degenerate
differential operator A: D(A) � C([0, 1]) defined by

Au(x) :=
x(1&x)

2
u"(x)+

w$(x)
w(x)

x(1&x) u$(x), 0<x<1, (2.1)

and by Au(0)=Au(1)=0, on the domain

D(A) :={u # C([0, 1]) & C2(]0, 1[) } lim
x � 0+

x(1&x)
2

u"(x)

+
w$(x)
w(x)

x(1&x) u$(x)= lim
x � 1&

x(1&x)
2

u"(x)

+
w$(x)
w(x)

x(1&x) u$(x)=0= . (2.2)

Problem (1.9) with conditions (1.10) can be written as follows

{u$(t)=Au(t), t�0, u(t) # D(A),
(2.3)

u(0)=u0 , u0 # D(A),

where u(t)=u( } , t) for t�0.
We note that

Au(x)=
x(1&x)
2w(x)2

d
dx

(u$(x) w(x)2) for 0<x<1

and that

w$(x)=o \ 1
x(1&x)+ as x � 0+, x � 1&

(see [2, Theorem 3.4]).
Our purpose is to show that the operator A generates a strongly con-

tinuous positive semigroup represented in terms of iterates of the operators
Ln , n�1. This, by basic semigroup theory, will furnish the solution of
(1.9)�(1.10) as limit of the same iterates.

We begin with the following result.

Proposition 2.1. The subspace C2([0, 1]) is a core for A.
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Proof. We fix u # D(A) and we show the existence of a sequence
(un)n # N in C2([0, 1]) converging to u in the graph norm of A.

First, we construct a sequence (vn)n # N in D(A) & C1([0, 1]) converging
to u in the graph norm of A and satisfying v"n(x)=O(w$(x))=o(1�x(1&x))
as x � 0+ and x � 1&.

We consider only the interval [0, 1�2] since the same argument applies
to the interval [1�2, 1].

For n�3 the continuous function vn is defined by the equations vn=u
in [1�n, 1�2] and (d�dx)(w2v$n) constant in the interval [0, 1�n]; this con-
stant must be c1 :=(d�dx)(w2u$)(1�n) and hence w2v$n=c2+c1(x&1�n) on
[0, 1�n] with c2 :=(w2u$)(1�n). This yields

vn(x)=u(1�n)+|
x

1�n

c1(t&1�n)+c2

w(t)2 dt, x # [0, 1�n].

We observe that vn # C1([0, 1�2]) & C2(]0, 1�2]) and v"n(x)=O(w$(x)) as
x � 0+. Since w is bounded from below, we can write vn(x)=u(1�n)+R(n)
in [0, 1�n] with

|R(n)|�C \ 1
n2 } u" \1

n+ }+
1
n2 } u$ \1

n+ }+
1
n } u$ \1

n+ }+ ,

where C is a constant independent of n.
Since u # D(A), we have limx � 0+ x(d�dx)(u$w2)=0. Then, if we consider

the function z(x)=(u$w2)$, we obtain z(x)=o(1�x) as x � 0+ and
u$(x)=w(x)&2 �x

1�2 z(t) dt+c3; this yields

u$(x)=o(log x) as x � 0+

and

u"(x)=O(w$(x) u$(x))=o \log x
x + as x � 0+. (1)

Therefore the sequence (R(n))n # N converges to 0 whence (vn)n # N con-
verges uniformly to u.

Moreover

sup
0�x�1�2

|Au(x)&A(vn)(x)|= sup
0�x�1�n

|Au(x)&A(vn)(x)|

� sup
0�x�1�n

|Au(x)|+ sup
0�x�1�n

|A(vn)(x)|
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� sup
0�x�1�n

|Au(x)|

+
1

2 inf0�x�1�2 w(x)2

1
n

d
dx

(u$w2) \1
n+ .

Since u # D(A), the last sum converges to 0 as n � �, and we conclude
that the sequence (A(vn))n # N converges uniformly to Au on [0, 1�2].

The second step consists in approximating every function vn of the
preceding sequence with elements of C2([0, 1]) in the graph norm of A.

So, assume that v # C1([0, 1]) & C2(]0, 1[) satisfies v"(x)=O(w$(x)) as
x � 0+ and x � 1&.

Also in this case we limit ourselves to the interval [0, 1�2]. For every
n�3, in this case we consider the continuous function un defined by the
relations un=v on [1�n, 1�2] and

un(x)=
1
2 \x&

1
n+

2

v" \1
n++\x&

1
n+ v$ \1

n++v \1
n+ , 0�x�

1
n

.

It is clear that un # C2([0, 1]). Moreover

sup
0�x�1�2

|un(x)&v(x)|= sup
0�x�1�n

|un(x)&v(x)|

�| \v,
1
n++

1
2n2 } v" \1

n+ }+
1
n } v$ \1

n+ }
and the last sum converges to 0 as n � � since w$(x)=o(1�x) as x � 0+.

Finally

sup
0�x�1�2

|A(un)(x)&A(v)(x)|� sup
0�x�1�n

|A(un)(x)|+ sup
0�x�1�n

|Av(x)|.

The last sum converges uniformly to 0 since, for every x # [0, 1�n]

|A(un)(x)|= } x(1&x)
2

v" \1
n++

w$(x)
w(x)

x(1&x) \\x&
1
n+ v" \1

n++v$ \1
n++ }

�
1
n } v" \1

n+ }+ sup
0�x�1�n }x(1&x)

w$(x)
w(x) } \

1
n } v" \1

n+ }+ } v$ \1
n+ }+

and v"(x)=o(1�x), w$(x)=o(1�x) as x � 0+. K
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In the sequel, we denote by Z: D(Z) � C([0, 1]) the operator defined
by (see (1.6))

Z( f )= lim
n � �

n(Ln( f )& f ) (2.4)

on the domain

D(Z)=[ f # C([0, 1]) | there exists lim
n � �

n(Ln( f )& f )]. (2.5)

Clearly, by (1.7) we have C2([0, 1])/D(Z).
The main theorem is the following.

Theorem 2.2. Let (*n)n # N and (\n)n # N be sequences of real numbers
such that the function w defined by (1.5) is strictly positive.

Then, the differential operator A: D(A) � C([0, 1]) defined by (2.1) is
the closure of Z and

A=Z on the core C2([0, 1]). (2.6)

Moreover, A is the generator of a strongly continuous semigroup
(T(t))t�0 such that, for every t�0 and for every sequence (k(n))n # N of
positive integers satisfying limn � � k(n)�n=t, we have

T(t)= lim
n � �

Lk(n)
n strongly on C([0, 1]). (2.7)

Hence, if u0 # D(A), the unique solution of (1.9) and (1.10) is given by

u(x, t)=T(t) u0(x)= lim
n � �

Lk(n)
n (u0)(x) uniformly in x # [0, 1]. (2.8)

Proof. Consider the functions :: [0, 1] � R and ;: ]0, 1[ � R defined
by

:(x)=
x(1&x)

2
, (0�x�1), ;(x)=

w$(x)
w(x)

x(1&x), (0<x<1)

(1)

and, for 0<x<1, define

W(x) :=exp \&|
x

1�2

;(t)
:(t)

dt+=exp \&2 |
x

1�2

w$(t)
w(t)

dt+=\w(1�2)
w(x) +

2

.
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Since the minimum of w is strictly positive, the function W is integrable
over the intervals [0, 1�2] and [1�2, 1]. Hence, by a theorem of Cle� ment
and Timmermans [3, Theorem 2] the operator A is closed and is the
generator of a strongly continuous semigroup (S(t))t�0.

Moreover, C2([0, 1]) is a core for A (see Proposition 2.1) and therefore
(*I&A)(C2([0, 1])) is dense in C([0, 1]) for a sufficiently large * # R.

By Voronovskaja's formula (1.7) we have Z=A on C2([0, 1]) and
consequently (*I&Z)(C2([0, 1]))=(*I&A)(C2([0, 1])) is dense in
C([0, 1]). Since every Ln is a positive contraction, we can apply Trotter's
theorem [15] (see also [11, Theorem 6.7, p. 96]) and conclude that the
closure Z� of Z generates a strongly continuous positive contraction semi-
group (T(t))t�0 satisfying (2.7).

Finally, C2([0, 1]) is a core also for Z� and hence D(Z� )=D(A) and
Z� =A; if follows in particular S(t)=T(t) for every t�0 (see [11,
Theorem 1.2.6, p. 6]) and this completes the proof of (2.7) and (2.8). K

Remark. If we assume

|w$(x)|=O \ 1

- x(1&x)+ as x � 0+ and x � 1&,

then the function ;�- : is bounded on ]0, 1[, where

;(x)=x(1&x)
w$(x)
w(x)

and :(x)=
1
2

x(1&x).

Hence we can apply directly a result of Martini (see [9, Theorem 3] and
[10]) which implies that the operator A generates a strongly continuous
semigroup on C([0, 1]) and that C2([0, 1]) is a core for A. In this case
Proposition 2.2 is no longer necessary but suitable assumptions on the
sequences (*n)n # N and (\n)n # N must be taken to guarantee the required
behavior at the endpoints.

Now, we investigate further properties of the semigroup generated by the
differential operator A. As shown in the following result, in most of the
cases its domain does not depend on the function ;.

Proposition 2.3. Assume that w is strictly positive and

w$(x)=O \ 1
x log x+ as x � 0+,

(2.9)

w$(x)=O \ 1
(1&x) log (1&x)+ as x � 1&.
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Then, the domain of the differential operator A defined by (2.1)�(2.2) is
given by:

D(A) :=[u # C([0, 1]) & C2(]0, 1[) | lim
x � 0+

x(1&x) u"(x)

= lim
x � 1&

x(1&x) u"(x)=0]. (2.10)

Proof. Denote by G the right-hand side of (2.10). If u # G, then
u"(x)=o(1�x) as x � 0+ and this implies u$(x)=o(log x) as x � 0+. Hence

lim
x � 0+

x(1&x)
2

u"(x)+
w$(x)
w(x)

x(1&x) u$(x)=0.

The same reasoning applies at the point 1 and therefore u # D(A).
Conversely, if u # D(A), as in (1) in the proof of Proposition 2.1, we

have u$(x)=o(log x) as x � 0+ and hence, by (2.9), limx � 0+(w$(x)�w(x))
x(1&x) u$(x)=0. By (2.2) it follows limx � 0+ x(1&x) u"(x)=0. Applying
the same argument at the point 1, we conclude that u # G. K

Condition (2.9) requires that the limit function w satisfies a stronger
property than strict positivity. In the following discussion we see how this
request reflects on the sequences (*n)n # N and (\n)n # N .

Let us assume that

w$(x)=O \ 1
(1&x) log (1&x)+ as x � 1&. (2.11)

In this case we can write w(x)=��
k=1 bkxk+.(x), where bk=\k&\k&1

(with the convention \0=0) and . regular at the point 1.
If (\m)m # N is increasing we have bk�0 for every k�1; by evaluating w$

at the points 1&1�n, we obtain

:
n

k=1

kbk \1&
1
n+

k&1

=O \ n
log n+ as n � �;

since (1&1�n)k&1 is bounded from below for every n # N and k=1, ..., n,
the last condition leads to

:
n

k=1

kbk=O \ n
log n+ as n � �. (2.12)

Then condition (2.12) is necessary to ensure (2.11).
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In the general case, assume that

:
n

k=1

k |bk |=O \ n
log n+ as n � �. (2.13)

Then

log(1&x) w$(x)=& :
�

n=1

xn

n
:
�

k=1

kbkxk=& :
�

n=2
\ :

n&1

k=1

kbk

n&k+ xn.

Put sn :=�n&1
k=1 kbk�(n&k); by (2.13) we have, for every N�1,

} :
N

n=1

sn }� :
N&1

k=1

k |bk | :
N

n=k+1

1
n&k

�c :
N&1

k=1

k |bk | log N=O(N),

and this yields log(1&x) w$(x)=O(1�(1&x)) as x � 1& (see [13, Sec-
tion 7.5, p. 225]). Then (2.13) implies the second part of condition (2.9).

In particular, if (\m)m # N is increasing, conditions (2.11) and (2.12) are
equivalent.

Finally, we observe that a sufficient condition which ensures the validity
of (2.13) is given by

|bn |=O \ 1
n log n+ as n � �. (2.14)

In fact

:
n

k=2

k |bk |=O \ :
n

k=2

1
log k+=O \|

n

2

1
log x

dx+ as n � �.

Putting

In :=|
n

2

1
log x

dx and Jn :=|
n

2

1
log2 x

dx,

we have, integrating by parts,

In=
n

log n
+O(1)+Jn

and hence In=O(n�log n) since limn � � In�Jn=�.
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Conversely, condition (2.14) is also necessary if (\n)n # N is increasing and
concave. In this case the sequence (bk)k # N is decreasing and converges to
0; so, we have

n2b2n=O \ :
2n

k=n+1

kbk+=O \ n
log n+ as n � �,

which implies bn=O(1�(n log n)) as n � �.
We observe that the convergence of the series ��

k=1 bk and condition
(2.14) are mutually independent.

Of course, a similar analysis can be carried out for condition (2.9) at the
point 0.

3. SEQUENCE OF OPERATORS ASSOCIATED
TO A DIFFERENTIAL OPERATOR

Starting with a sequence (An)n # N of recursively defined Bernstein-type
operators, in Theorem 2.2 we studied when the corresponding differential
operator A generates a strongly continuous semigroup represented in
terms of iterates of these operators.

At this point, we deal with the converse problem of finding sequences
(*n)n # N and (\n)n # N associated to a fixed differential operator. In this way,
we recover the operators from the evolution equation.

In the sequel we consider a differential operator A: D(A) � C([0, 1])
having the form

Au(x) := 1
2x(1&x) u"(x)+x(1&x) /(x) u$(x), 0<x<1, (3.1)

with Au(0)=Au(1)=0, on the domain

D(A) :={u # C([0, 1]) & C(]0, 1[) } lim
x � 0+, 1&

x(1&x)
2

u"(x)

+x(1&x) /(x) u$(x)=0= (3.2)

and we ask whether there exist two sequences (*n)n # N and (\n)n # N of real
numbers satisfying (1.4) for which the function / can be written as

/(x)=
w$(x)
w(x)

, 0<x<1.
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Indeed, in this case, we can approximate the solution of (2.3) by means
of iterates of the operators Ln corresponding to the sequences (*n)n # N and
(\n)n # N .

In order to give some examples, we observe that if

f (z)= :
�

n=0

an zn (3.3)

has radius of convergence r�1 and ��
n=0 an converges, then, by putting,

for example, *m=a0 and \m=a0+ } } } +am , m�1, we can write

f (x)= :
�

m=1

*m x(1&x)m+ :
�

m=1

\m(1&x) xm, 0�x�1; (3.4)

therefore, on the interval [0, 1], the function f coincides with the function
w associated with the sequences (*n)n # N and (\n)n # N (see (1.5)).

Moreover, if f is strictly positive on [0, 1], the sequences (*n)n # N and
(\n)n # N are definitively positive and satisfy (1.4).

Example 3.1. Let / be a polynomial. By imposing /=w$�w, we obtain
w(x)=exp(�x

0 /(t) dt). Hence in this case w is positive and has the form
(3.3).

Example 3.2. If w is a polynomial positive in [0, 1], the function
/(z)=w$(z)�w(z) is a complex rational function, real on the real axis, and
satisfies lim|z| � � /(z)=0; moreover / has simple poles with integer
positive residuals in C"[0, 1].

Conversely, assume now that / is a complex rational function, real on
the real axis, satisfying lim|z| � � /(z)=0 and having simple poles with
positive integer residuals in C"[0, 1]. Then, there exist n, m, ni , mi # N and
xi # C"[0, 1] such that

/(z)= :
n

i=1
\ ni

z&zi
+

ni

z&z� i++ :
m

i=1

mi

z&xi

and hence /=w$�w if

w(z)= \ `
n

i=1

(z&zi)
ni (z&z� i)ni `

m

i=1

(z&xi)
mi.

Remark. We observe that the case w polynomial is already quite
satisfactory from the point of view of approximating the solutions of
problem (1.9)�(1.10).
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Indeed, if /(x)=w$(x)�w(x) (x # [0, 1]) with w # C1([0, 1]) positive, we
can consider a sequence (wn)n # N of polynomials satisfying limn � � wn=w
and limn � � w$n=w$ uniformly on [0, 1]. For every n # N, we set /n :=
w$n(x)�wn(x) and we denote by An the differential operator associated with
wn by (2.1). If A is defined as in (2.1), we have limn � � An( f )=A( f ) for
every f # C2([0, 1]) and moreover (I&A)(C2([0, 1])) is dense in
C([0, 1]) (see the proof of Theorem 2.2). As a consequence of the Trotter�
Kato theorem (see, e.g., [11, Theorem 4.5, p. 89]), if we denote by
(T(t))t�0 the semigroup generated by A and by (Tn(t))t�0 that one
generated by An , n�1, we have

lim
n � �

Tn(t)=T(t) strongly on C([0, 1])

and the convergence is uniform with respect to t in bounded intervals. This
also shows that if u0 # D(A) (=D(An) for every n�1) and if we indicate
by u and respectively by un the solutions of (1.9)�(1.10) corresponding to
the differential operators A and An , then

u(x, t)= lim
n � �

un(x, t) uniformly in [0, 1]_[0, t0]

for every t0>0.
A similar discussion can be carried out by considering a sequence of

polynomials (/n)n # N converging uniformly to / (see Example 3.1).
Finally, we consider the general problem of defining sequences (*n)n # N

and (\n)n # N associated to an assigned function /.
We introduce the set

D :=B(0, 1) & B(1, 1) (3.5)

and denote by H(D) the space of all holomorphic functions on D.
We observe preliminarily that the function w associated to the sequences

(*n)n # N and (\n)n # N is an element of H(D) and consequently, the function
/=w$�w is meromorphic in D, real on the interval ]0, 1[ and has simple
poles with positive integer residuals in D"[0, 1].

Now, assume that a function / is assigned and consider the converse
problem of finding a function w such that /=w$�w. Our result is based on
the following considerations.

Let 0 be a bounded open subset of C; the integral operator

Tu(z) :=&
1
? |

0

u(`)
`&z

dx dy, `=x+iy # 0, (3.6)

has the following properties:
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(1) T is bounded as an operator from L2(0) in L2(0) (see [5,
Proposition 3.11, p. 158]);

(2) If u # L�(0) then T(u) # C(0� ) (see [5, Proposition 3.13, p. 159]);

(3) If u # C�
0 (0) then w=T(u) # C�(R2) and �w��z� =u, where

���z� = 1
2 ((���x)+i(���y)) (see [6, Theorem 1.2.2, p. 3]).

Now, let u # C�
0 (0); by property (3), w=T(u) satisfies the first order

system

{(Re w)x&(Im w)y=2 Re u;

(Re w)y+(Im w)x=2 Im u.

A simple integration by parts yields

|
BR

|u| 2= 1
4 |

BR

|{w| 2+ 1
2 |

SR

((Re w)(Im w)x &2&(Re w)(Im w)y &1) d_,

where BR :=[z # C | |z|�R], SR=�BR and (&1 , &2) is the exterior normal
to SR .

Since |w(z)|=O( |z|&1) and |{w(z)|=O( |z| &2) for z � �, letting
R � �, the boundary integral tends to zero, whence �C |{w| 2=4 �0 |u| 2.

This implies, by a density argument, that T is a bounded operator from
L2(0) in W 1, 2(0). Moreover �T(u)��z� =u, in the distribution sense, for
every u # L2(0).

We point that if �w��z� =0 in the distribution sense, then w is analytic in
0, since the operator ���z� is analytic-hypoelliptic (see [14, Theorem 3.1,
p. 23]).

After these preliminaries, we can state the following

Theorem 3.3. Let / be a meromorphic function on D, real on the interval
]0, 1[ and with a finite number of simple poles with positive integer residuals
in D"[0, 1]. If / admits a continuous extension to �D, then there exist two
converging sequences (*n)n # N and (\n)n # N such that the fucntion w defined
by (1.5) is strictly positive and /=w$�w.

Proof. We write /=/1+/2 , where /1 and /2 have the same properties
of / and, in addition, /1 # C(D� ) and /2 is a rational function vanishing at
infinity. We denote by p the polynomial considered in Example 3.2 satis-
fying /2=p$�p and define the function w: D� � C by

w(z) :=p(z) } exp \|
z

0
/1(s) ds+ , z # D� .
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Of course, /=w$�w in D and w is real and strictly positive on [0, 1].
Moreover we consider an extension w~ # C1(B� (0, 1)) and define the func-

tion a # C(0� ) by

a(z) :={
�
�z�

w~ (z), if z # B� (0, 1),

0, if z # B� (1, 1).

Let 0=B(0, 1) _ B(1, 1) and u=T(a); by the above discussion, we have
u # C(0� ) & W 1, 2(0) and �u��z� =a. It follows that w=l+r on D, with
l=u and r=(w~ &u). Since r is analytic in B(0, 1) and l is analytic in
B(1, 1), we can write

l(z)= :
�

n=0

an(z&1)n, r(z)= :
�

n=0

bn zn.

Moreover l # C(B� (1, 1)) & W 1, 2(B(1, 1)) and r # C(B� (0, 1)) & W 1, 2(B(0, 1)),
whence l(1+ei%) is in C(�(B(1, 1))) and its nth Fourier coefficients is an ;
analogously, r(ei%) is in C(�(B(0, 1))) with bn as n th Fourier coefficient.
Since l # W 1, 2(B(1, 1)) and r # W 1, 2(B(0, 1)), we have ��

n=0 n |an | 2<+�
and ��

n=0 n |bn | 2<+�. These conditions imply (see Lemma 3.4 below)
l(1+ei%)=��

n=0 an(1+ein%) uniformly on [&?, ?] and r(ei%)=
��

n=0 bn ein% uniformly on [&?, ?]. In particular, the series ��
n=0 an and

��
n=0 bn converge.
Defining, for every m�1,

*m :=b0+a1+ } } } +am and \m :=a0+b1+ } } } +bm ,

we write w in the form (1.5). K

For the proof of the announced Lemma 3.4, we denote by E the Banach
space of all f # C(�B(0, 1)) such that �n # Z n | f� (n)|2<+�, endowed
with the norm & f &E=& f &�+(�n # Z n | f� (n)| 2)1�2. Moreover, Sn f (%) :=
� |k|�n f� (k) eik% will be the n th partial sum of the Fourier series of f .

Lemma 3.4. For every f # E, we have limn � � Sn f = f in the norm of E
and hence uniformly on [&?, ?].

Proof. We consider the nth Fejer operator

_n( f )(%) := :
|k|�n&1

\1&
|k|
n + f� (k) eik%.

Then

_n( f )(%)=Sn&1( f )(%)&
1
n

:
|k|�n&1

|k| f� (k) eik%.
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Since

} :
|k|�n&1

|k| f� (k) eik% }�Cn \ :
|k| # Z

|k| | f� (k)| 2+
1�2

,

with C independent of n and &_n( f )&��& f &� , we obtain &Sn( f )&E�
(1+C) & f &E whence supn # N &Sn&E< +�.

At this point it is sufficient to show that trigonometric polynomials are
dense in E and this follows by the inequality

&_n( f )& f &E�&_n( f )& f &�+
1
n \ :

|k|�n&1

|k| | f� (k)| 2+
1�2

+\ :
|k|�n

|k| | f� (k)| 2+
1�2

. K

4. FURTHER QUALITATIVE PROPERTIES AND
CONVERGENCE OF ITERATES

In this section, we study some further consequences of Theorem 2.2. We
give a partial converse of the uniform Voronovskaja type formula (1.7) and
some qualitative properties of the solution of (1.9)�(1.10); a pointwise con-
verse of (1.7) can be investigated with the same methods used in [8,
Theorem 4.3] (see also [7]).

Finally, since the solution of (1.9)�(1.10) is expressed in terms of iterates
of the operators Ln (see (2.8)), we describe their behavior in some simple
cases.

First, consider the differential operator A defined by (2.1). Under the
assumptions (1.4), we have seen in Theorem 2.2 that it coincides with the
closure of Z (see (2.4)); since the domain of A is given by (2.2), (2.5)
provides us with the following partial converse of the Voronovskaja type
formula.

Proposition 4.1. Let (*n)n # N and (\n)n # N be converging sequences of
positive real numbers satisfying (1.4). If f # C([0, 1]) and (n(Ln( f )& f ))n # N

is uniformly convergent, then f # C2(]0, 1[) and

lim
x � 0+, 1&

x(1&x)
2

f "(x)+
w$(x)
w(x)

x(1&x) f $(x)=0 (4.1)
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In particular, if we consider the function #: [0, 1] � R defined by

#(x)=\|
1

0

1
w(t)2 dt+

&1

|
x

0

1
w(t)2 dt, (4.2)

we have limn � � n(Ln( f )& f )=0 if and only if

f (x)= f (0)+#(x)( f (1)& f (0)), x # [0, 1]. (4.3)

Another consequence of Theorem 2.2 concerns the convergence of the
iterates of the operators Ln , n�1. As already observed, we have Af =0 if
and only if f =a#+b, with a, b # R.

Some qualitative properties of the function # can be derived directly by
[2, Proposition 2.5]. For example, we observe that if (*n)n # N is increasing
and (\n)n # N is decreasing, then the function w is decreasing (see [2,
Proposition 2.5, 3)]) and consequently, since 1�w2 is increasing, the func-
tion # turns out to be convex.

Moreover, through the substitution u(x)=v(#(x)), the differential
operator A can be written as

Au(x)=
1
2

g( y)(1&g( y))
w( g( y))4 vyy( y),

where g=#&1 and y=#(x).
Consequently, the corresponding parabolic problem becomes:

{
�v
�t

( y, t)=
1
2

g( y)(1&g( y))
w( g( y))4

�2v
�y2 ( y, t), 0< y<1, t>0,

(4.4)
lim

y � 0+, 1&

1
2

g( y)(1&g( y))
w( g( y))4

�2v
�y2 ( y, t)=0, t>0,

v( y, 0)=v0( y).

Note that by [4] no regularity assumption on the function v0 is
necessary.

It is well known that in this case we have the following properties of the
solution v( y, t) (see, e.g., [1, 6.2.7, p. 442]):

(1) lim
t � �

v( y, t)=v0(0)(1& y)+v0(1) y uniformly on [0, 1],

(2) lim
t � �

v( y, t)=0 if and only if v0(0)=v0(1)=0,
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and moreover, if we indicate by (S(t))t�0 the semigroup generated by the
differential operator

A*(v)( y)=
1
2

g( y)(1&g( y))
w( g( y))4 v"( y),

we also have

(3) lim
t � �

(S(t) v)( y)=v(0)(1& y)+v(1) y

for every v # C([0, 1]), y # [0, 1].

Hence, since #(0)=0 and #(1)=1, we can state the corresponding
properties of the solution of problem (1.9)�(1.10), by the change of variable
y=#(x).

Proposition 4.2. Let (*n)n # N and (\n)n # N be sequences of positive real
numbers such that *�>0 and \�>0. Moreover, let u0 # C([0, 1]) and
denote by u: [0, 1]_R+ � R the unique solution of (1.9)�(1.10). Then

(1) lim
t � �

u(x, t)=u0(0)(1&#(x))+u0(1) #(x) uniformly on [0, 1],

(2) lim
t � �

u(x, t)=0 if and only if u0(0)=u0(1)=0.

Finally, if we define the projection P: C([0, 1]) � C([0, 1]) by

Pu(x)=u(0)(1&#(x))+u(1) #(x), u # C([0, 1]), x # [0, 1], (4.5)

we have

(3) lim
t � �

T(t)=P strongly on C([0, 1]).

This last property (3) together with (2.7) suggests us to investigate the
general behavior of the iterates of the operators Ln . We begin with the
simple case where the integer n is fixed and study the sequence (L p

n )p # N . In
the sequel we assume that the function An(1) is strictly positive. We also
consider the subspace

F :=[ f # C([0, 1]) | f (0)= f (1)=0] (4.6)

and we observe that Ln(F)/F.
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Lemma 4.3. For every f # F, we have

lim
p � �

L p
n( f )=0 uniformly on [0, 1]. (4.7)

Proof. Let f # F, 0� f �1; we have

0�Ln( f )(x)=
�n

k=0 :n, kxk(1&x)n&k f (k�n)
�n

k=0 :n, kxk(1&x)n&k

�
�n

k=0 :n, k xk(1&x)n&k&(*n(1&x)n+\nxn)
�n

k=0 :n, k xk(1&x)n&k �1&$<1,

where

$ := min
0�x�1

*n(1&x)n+\nxn

�n
k=0 :n, kxk(1&x)n&k>0.

Then the norm of Ln as an operator from F into itself is less than 1 and
this yields (4.7). K

Proposition 4.4. There exist continuous functions #n # C([0, 1]) satisfy-
ing #n(0)=0, #n(1)=1, 0�#n�1 such that the sequence (L p

n )p # N converges
strongly to the projection Pn : C([0, 1]) � C([0, 1]) defined by

Pn(u)(x)=u(0)(1&#n(x))+u(1) #n(x), u # C([0, 1]), x # [0, 1]. (4.8)

Moreover, the projection Pn commutes with Ln .

Proof. For every p�1 and f # C([0, 1]), we have L p
n( f )(0)= f (0) and

L p
n( f )(1)= f (1) and therefore &L p

n &=1, hence the spectral radius of Ln is
equal to 1. By the positivity of Ln , we have 1 # _(Ln) and 1 is a simple pole
of the resolvent since &Ln&=1.

If ei%{1 and if f # C([0, 1]) satisfies Ln( f )=ei%f , we have f (0)=
Ln( f )(0)=ei% f (0) and f (1)=Ln( f )(1)=ei% f (1), from which f (0)=0 and
f (1)=0; so, f # F and by Lemma 4.3,

0= lim
p � �

L p
n( f )= lim

p � �
eip%f ;

this implies f =0. Hence we have proved that

_(Ln) & [z # C | |z|=1]=1.

This yields the strong convergence of (L p
n )p # N to a projection Qn which

commutes with Ln (see, e.g., [12, Theorem 3.1, p. 10]).
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Now, put #n=Qn(id) and observe that 1 and #n are linearly independent
since #n(0)=0, #n(1)=1, while Qn(1)=1 since Ln(1)=1. By Lemma 4.3,
Qn(F)=[0] and therefore the range of Qn is generated by 1 and #n . Hence
Qn coincides with the projection Pn defined by (4.8) and this completes the
proof. K

If the integer n is not fixed, we can consider the convergence of
the sequence (Lk(n)

n )n # N for a suitable sequence (k(n))n # N of positive
integers. By (3) of Proposition 4.2 and (2.7), it is natural to ask
whether limn � � Lk(n)

n =P strongly on C([0, 1]) under the assumption
limn � � k(n)�n=�. Unfortunately, we are not able to establish this in a
complete form; this is equivalent to show that the sequence (Pn)n # N con-
verges strongly to P or that the sequence (#n)n # N converges uniformly to
# or, again, that the sequence (#n)n # N is equicontinuous.

At the moment, we have only at our disposal the following partial result.

Theorem 4.5. If (k(n))n # N is a sequence of positive integers satisfying
limn � � k(n)�n=�, then limn � � Lk(n)

n ( f )=0 (=P( f )) uniformly on [0, 1]
for every f # F.

Proof. Let f # F, =>0 and t0>0 such that &T(t) f &�= for
every t�t0 . Moreover, consider & # N such that, for every n�&,
&L[nt0]

n ( f )&T(t0) f &�=. Then &L[nt0]
n ( f )&�2= for every n�&; if we take

n�& such that kn�[nt0] we have

&Lk(n)
n ( f )&=&Lk(n)&[nt0]

n L[nt0]
n ( f )&�&L[nt0]

n ( f )&�2=. K
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